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NUMERICAL CONFORMAL MAPPING BASED ON THE 
GENERALISED CONJUGATION OPERATOR 

BAO CHENG LI AND STAVROS SYNGELLAKIS 

ABSTRACT. An iterative procedure for numerical conformal mapping is pre- 
sented which imposes no restriction on the boundary complexity. The for- 
mulation involves two analytically equivalent boundary integral equations es- 
tablished by applying the conjugation operator to the real and the imaginary 
parts of an analytical function. The conventional approach is to use only one 
and ignore the other equation. However, the discrete version of the operator 
using the boundary element method (BEM) leads to two non-equivalent sets of 
linear equations forming an over-determined system. The generalised conjuga- 
tion operator is introduced so that both sets of equations can be utilised and 
their least-square solution determined without any additional computational 
cost, a strategy largely responsible for the stability and efficiency of the pro- 
posed method. Numerical tests on various samples including problems with 
cracked domains suggest global convergence, although this cannot be proved 
theoretically. The computational efficiency appears significantly higher than 
that reported earlier by other investigators. 

1. INTRODUCTION 

For the last two decades or so the numerical generation of a boundary-fitted coor- 
dinate system (BFCS) has been attracting considerable attention among researchers 
within various branches of science and engineering. The aim of the technique is ba- 
sically to construct curvilinear coordinate systems on physical 2-D or 3-D domains 
with a coordinate line or surface coinciding with the domain boundary. The philos- 
ophy behind this is that the problems under consideration may be re-cast in terms 
of the new coordinates and, hopefully, their solution may be more easily achieved. 
Eqfuivalently, the technique can be regarded as a means of transforming an arbi- 
trarily shaped physical domain into a simple canonical domain, such as a rectangle 
or a unit circle. The solution of the problem in the canonical domain, usually easier 
due to the simpler boundary conditions, is then transformed back to the original 
domain. 

The most vigorous investigations on the subject have been undertaken princi- 
pally within the field of fluid dynamics. This is largely due to the fact that most 
of the present computational fluid dynamic (CFD) problems are solved by finite 
difference (FD) techniques which, nevertheless, cannot be easily adapted to com- 
plicated boundary conditions. Thus the domain transformation can significantly 

Received by the editor September 7, 1995 and, in revised form, September 19, 1996. 
1991 Mathematics Subject Classification. Primary 30C30; Secondary 65N38. 
Key words and phrases. Numerical conformal mapping, conjugation operator, boundary inte- 

gral equation. 

(D 1998 American Mathematical Society 

619 



620 BAO CHENG LI AND STAVROS SYNGELLAKIS 

simplify the CFD coding. The numerical generation of BFCS has also proved to be 
useful for finite element (FE) grid generations. 

There are basically three types of procedures for BFCS generation. The first 
uses algebraic trafisformations which are fast but usually do not produce sufficiently 
smooth coordinate systems. The second type constructs a BFCS from the solutions 
of partial differential equations (PDE's), which are either elliptic or hyperbolic. 
Chu [1] seems to be the first to adopt this method in FD solutions of 2-D fluid flow 
problems. Mastin and Thompson [2] extended this idea to 3-D problems. There 
have been numerous investigations on controlling the distribution of the coordinate 
lines, on generating orthogonal systems and on the trade-off between orthogonality 
and line spacing [3, 4]. A very comprehensive survey of the research prior to 1981, 
containing nearly four hundred references, has been presented by Thompson et 
al. [5]. More recently, Sparis [6] has proposed the use of biharmonic equations for 
BFCS generation. His method allows direct and complete control of the mesh point 
location on the boundary and the angle of intersection of the coordinate lines with 
the boundary. 

The third technique is based on the numerical conformal mapping (NCM) which 
defines a curvilinear system locally resembling a Cartesian frame, and is generally 
preferable to other methods. Normally the PDE's are less distorted, and the Laplace 
equation in particular remains unchanged under conformal mapping. However, the 
construction of NCM usually requires the solution of a non-linear integral equation 
for which there are few generically effective algorithms. This is considered its main 
disadvantage. 

The numerical conformal mapping technique can be used to transform a general 
domain into the interior of a unit circle. This effort is justified by the well-known 
fact that a Dirichlet or a Neumann problem for the Laplace equation can be solved 
explicitly by Poisson's or Dini's formula if the problem domain is the interior of 
a circle. For problems in solid mechanics and fracture mechanics, NCM can be 
combined with the boundary element method to produce highly efficient solutions. 
NCM is also a competitive method to generate FE and FD grids. 

The technique is most often applied to fluid dynamics problems. For example, 
NCM has been employed for the calculation of transonic flow over airfoils [7]. Such a 
mapping greatly simplifies the boundary conditions and ensures that the non-linear 
PDE's in the computational plane are only slightly more complicated than in the 
physical plane. NCM has been found particularly useful in 2-D incompressible, 
irrotational free-surface flow problems [8, 9]. 

There are conventionally four methods in the constructive theory of conformal 
mapping: (1) a proper mapping for the problem under consideration may be for- 
tuitously found by trying several transformations such as polynomial, rational or 
elliptic functions; (2) in the case of a nearly circular problem domain, there exists 
a closed form analytic function which approximately maps the domain onto the 
interior of a unit circle; (3) a general polygon can be mapped onto a circle or a 
half-plane by using the Schwarz-Christoffel formula; (4) with a domain bounded by 
circular arcs, the mapping can be constructed by solving a second order linear dif- 
ferential equation and determining the associated parameters. All four approaches 
have been thoroughly treated by Nehari [10]. It has to be emphasised that the clas- 
sical methods, notwithstanding their elegance, are principally of academic rather 
than practical interest. This is so because the first two methods are only applicable 
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to very special domains, while the application of the last two involves excessive 
difficulty in evaluating the associated parameters. 

2. NUMERICAL CONFORMAL MAPPING 

Since closed form solutions to conformal mapping are too limited to cope with 
general problems, modern developments on the subject are mainly directed towards 
their numerical construction. The methods of NCM fall generally into two classes: 
those which map the problem domain onto a canonical domain such as the interior of 
a unit circle, and those by which the mapping is performed in the reverse direction. 
Since an analytic function is entirely determined by its boundary value, the primary 
effort involved in NCM is to construct the boundary correspondence function (BCF) 
which establishes a bijective mapping between the boundaries of the problem and 
the canonical domains. The BCF is usually governed by a certain boundary integral 
equation (BIE) which can be numerically solved by discretizing the boundary at n 
points and transforming the integral equation into an algebraic system. 

In the methods developed by Symm [11, 12] and its variants [13, 14, 15], which 
belong to the first group, the BIE's are generally linear and their solution requires 
at least n2 1og2 n operations. On the other hand, the integral equations associated 
with the methods in the second group are usually non-linear and they can be solved 
iteratively by successively applying the fast Fourier transform (FFT), hence the 
computation is 0 (n log2 n). There is a great variety of methods for mapping the unit 
circle onto the problem domain. They include the successive conjugation methods 
of Theodorsen [16, 17], Timman [18] and Friberg [19]; the projection method of 
Bergstrom [20] and the Newton methods of Vertgeim [21], Wegmann [22, 23, 24], 
Hiibner [8] and Fornberg [25, 26]. The numerical computation of the Schwarz- 
Christoffel transformation [27, 28, 29] also belongs to the second group, though, in 
this case, a system of transcendental equations for the accessory parameters needs 
to be solved rather than a BIE for the BCF. 

The following discussion serves as an introduction to some key concepts focusing 
on three of the most original and efficient methods. For simplicity, only simply- 
connected domains are considered. The problem of conformal mapping is formally 
stated below. 

Problem A. Let Q, and Qw be simply-connected domains in complex z- and w- 
planes bounded by C, and Cw, respectively. It is required to find an analytic 
function f (z) which maps Q, onto Qw and assumes every value in Qw exactly once. 

(i) Theodorsen's method. In Problem A, Q, is the interior of a unit circle and 
Qw is star-like with respect to the origin. The boundary C" is given in polar 
coordinates, 

Cw :w() =p(P)ei, 0< ?p < 2wr. 

The boundary value of f (z) can be written in terms of the boundary corresponding 
function so(0), 

f(ei0) = p[P(O)]e i(0), 0 < 0 < 2wr. 

It has been proved that so(0) must satisfy the Theodorsen equation, 

(2.1) (p(O)-0 = K{logp[(p(0)]}, 
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which has exactly one continuous solution for 0 < fo < 2wr when p(p) is any contin- 
uous positive function of period 2wr. The conjugation operator K is defined by the 
principal value integral 

1 T27[ t s 
(2.2) Kf (t) 2w PVj f(s) cot 2 ds. 

There are various non-linear iterative methods to solve (2.1). The dominant com- 
putation at each step is a function conjugation, which can be carried out by two 
FFT's, therefore is O(n log2 n). 

If convergence is achieved, it is typically linear. The global convergence is ensured 
only if the i-condition 

E= sup IP'(0)/P(0)I < 1 
0<0<27r 

is satisfied. The iteration is likely to diverge even if E is slightly greater than 1. 
However this difficulty may be alleviated by applying a preliminary transformation 
which maps the original domain onto a nearly circular region. 

Recently Huibner [8] has developed a Newton method to solve the Theodorsen 
equation and thus has achieved quadratic convergence. This method is based on the 
rediscovered fact, originally observed by Vertgeim [21], that the Newton correction 
at each iteration can be viewed as the solution of a Riemann-Hilbert problem. 

(ii) Symm's method. If Qw, is the interior of a unit circle and Q, contains the 
origin, Problem A can be reduced to a Dirichlet problem: it is required to construct 
a harmonic function g on Q, satisfying the boundary conditions 

g(z) = -log IzI, z E C. 

Once this is done, the function defined by 

f (z) = z exp(g + ih), 

where h is the harmonic conjugate of g, is the desired solution of Problem A. 
The method proposed by Symm essentially solves the Dirichlet problem associated 
with a conformal mapping by an indirect boundary element formulation. More 
specifically, g(z) is constructed from a single layer potential 

(2.3) g(z) log Iz-t1a(t)dt. 
cz 

The source density a in (2.3) is the solution of the following singular Fredholm 
integral equation of the first kind, called Symm's equation, 

(2.4) Jloglz-tlu(t)dt =log zl, z CZ. 
cz 

In order to solve (2.3) numerically, the boundary has to be discretized and a is 
interpolated at a set of n points on the boundary. The computation is usually 0(n3). 

However, Berrut [15] has recently proposed an algorithm which solves Symm's 
equation in 0(nr2 1og2 n) steps by means of FFT. 

(iii) Wegmann's method. It is assumed that Cw in Problem A has a parametriza- 
tion 7(s) and Qz is the unit circle. The problem can be reduced to the determination 
of a real function S(O) satisfying 

f(ei0) = q [S(0)] 

where f(ei0) is the boundary value of an analytic function f(z). 
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The solution proposed by Wegmann proceeds by iterations. Let Sk (0) be the 
approximation of S(0) at the k-th step; a correction u(0) is to be found such that 

(2.5) r1(Sk + a) = hk+1(e 'o) 

where hk+1 is an analytic function. While it is difficult to determine a(0) exactly, 
the linearized form of (2.5) 

(2.6) r,(Sk) + r'q(Sk)o"k = hk+1 

is used to obtain an approximation gk of a. The updated function Sk+1 = Sk + Uk 

is believed to represent a better approximation of S(0). 
The method of Wegmann is so far the most efficient for conformal mapping. 

The efficiency is largely based on the observation that the Newton increment ak in 
(2.6) is in fact the solution of a Riemann-Hilbert problem. It can be represented 
explicitly and its numerical computation takes only four FFT's plus several function 
evaluations. Under suitable assumptions on the smoothness of Cw, it has been 
proved that the convergence is locally quadratic. 

3. THE CONJUGATION OPERATOR 

Let Q be the interior of a unit circle lzl < 1 and C its boundary. It is assumed 
that f (z) = U(x, y) + iV(x, y) is an analytic function in Q while Uo and Vo denote 
U(0, 0) and V(0, 0), respectively. The Schwarz formula 

1 f27 eit +_zU(it~d 
(3.1) f(z) 2 ] it ei- + U(e?t)dt + iVo, z E Q, 

expresses the function f (z) in terms of the boundary values of its real part. 
Now let z tend to a point zo = eis c C from inside Q. The limit of (3.1) as 

z -* ei5 becomes 

U(eis)+iV(eis) = lim . 
U(eit)dt + iVo 

1 r eit + eis 
= U(eis) + 2wr it e - U(ez )dt + iVo, 0 < s < 27rw 

where the second term on the right hand side is understood to be the Cauchy 
principal value. The above equation can be further reduced to 

(3.2) V(e's) - Vo = K U(e?s), 0 < s < 21r, 

where the conjugation operator K is defined by [30, 31] 

(3.3) KU(e"s) = - eit e U(eit)dt, 0 < s < 2wr. 

Since the function g(z) = if (z) =-V + iU is also analytic, its real and imaginary 
parts satisfy (3.2), hence, 

(3.4) U(e's) - Uo = -KV(e'iS), 0 < s < 2wr. 

It is clear that K is closely related to the theory of analytic functions through (3.2) 
and (3.4). The relationship is even closer due to the following fact [33]: 
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If U(e't), V(eit) E LP (1 < p < oc), 0 < t < 2wr, satisfy (3.2) or (3.4), then the 
function f(z) defined by 

f(eit) = U(eit) + iV(eit) 0 < t < 2wr, 

is analytic in Q. 
The above statement actually says that given any real function U (or V) from 

function space LP (1 < p < oc) defined on C, another function V (or U) can be 
constructed by applying the conjugation operator K such that the complex valued 
function U + iV represents the boundary value of an analytic function in Q; and 
equations (3.2) and (3.4) imply each other. 

It is worth noting that K takes forms other than (3.3). One of them has already 
been given by (2.2) which is obtainable from (3.3) by simple algebraic manipulation. 
The operator defined by (2.2) is sometimes called the Hilbert transform. When U(t) 
is given by its Fourier series 

+00 

U(eis) akeiks 0 < s < 2wr, 
k=-oo 

the conjugation operator is defined by 

+00 

(3.5) KU(eis) =-i , Sign(k)ake ik 0 < s < 2wr, 
k=-oo 

where Sign(k) -1, 0 or 1 if k is less than, equal to or greater than zero, respec- 
tively. It transpires from (3.5) that K is a bounded linear operator on L2 and its 
norm is IIKI12 = 1. 

4. DISCRETE CONJUGATION OPERATOR (DCO) 

For numerical implementation, the conjugation operator K has to be approxi- 
mated. This is achieved by the boundary element method [32]. The formulation 
proceeds in three steps: 

(1) The boundary C is discretized into n line elements with the n nodes being 
equidistantly distributed along C, that is 

n 

C= U Cm; 

m=1 

(2) U is represented on each element by a linear interpolation function, namely, 

U(Z) = Zl1 ZU(Zm) + 
z 
Zm + mU(Zm+1) 

Zm+1 - Zm Zm+1 - Zm 

where Z E Cm and Zm, Zm+i are the end nodes of Cm; 
(3) The function KU is linearly interpolated between the two nodal values on 

each Cm taking (3.3) as the representation of K. Since the imaginary value 
introduced by discretization is meaningless, only the real part of the right 
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hand side of (3.3) is retained, hence 

V(ets) = KU(ets) 

= Re [1VT E Jc eit + eis d( eit) = Re {-1 E tZ + (e'i-t) * 

[2wZ~dl1C it - e'is 

= Re{2 
Z'm 

Zj e.s [;;I Z U(Zrln) 

Z rnl dZ1 + U(Zrn?i)I > 

Let 

Zm - (2T/n)(m-1) 

Vk = V(Zk), Umrn U(zm); k, mn 1, 2, .. ., n, 
then 

n 

(4.1) Vk E CkGrmrU 
m=1 

where 

-1 F/Z + Z+k Z -Zm-l dZ 
(4.2) Ckm 27r Re z -jZk m-Zm-i Z 

+ 2 Re [j Z Zk ZrIZ Zm z 
Denote the space of n-tuples of real numbers by Rn and let U = (u1, U2, ... ., Un)T E 

Rn and V = (vI,v2,.. .,vn)7 E R". Then (4.1) can be written in matrix form 

(4.3) V=CU 

where C = [Ckml (k, m = 1,2,... ,n). The matrix C in (4.3) corresponds to a 
finite-dimensional approximation of the conjugation operator K, and is actually 
circulant. Therefore, it can be represented by 

C = Circ(cl, C2, , Cn). 

The choice of (3.3) rather than the more compact form (2.2) as the representation 
of K is owing to the fact that the former allows the associated integrals to be carried 
out explicitly, hence avoids the necessity of numerical integration. 

Let M = (ci,c2,... Cn)T. For any even n, careful examination of (4.2) leads 
to the conclusion that M is a skew-Hermitian sequence. If the sequence E - 

(eil, e2 , ... ., e5n)T contains the eigenvalues of the circulant C, then 

E= nF*M 

where F* is the conjugate transpose of the Fourier matrix defined in the Appendix. 
Since M is both real and skew-Hermitian, the theory of discrete Fourier transform 
[331 predicts that E is an imaginary and Hermitian sequence, thus, 

e-1 = e-l+n/2 = Oi e-i = -e-n+2-ii i = 2,3,. .. .,n/2. 

It is therefore only necessary to study the last n/2 - 1 eigenvalues of C. Table 1 
lists the imaginary parts of the eigenvalues for n = 8,16, 32, 64. 
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TABLE 1. Eigenvalues of C 

n lm(el,), i = n/2 + 2, . .., n 
8 -0.6997 -0.9553 -0.9978 
16 -0.4037 -0.7030 -0.8755 -0.9568 -0.9884 

-0.9980 -0.9999 
32 -0.2102 -0.4043 -0.5706 -0.7038 -0.8042 

-0.8761 -0.9252 -0.9571 -0.9770 -0.9886 
-0.9950 -0.9981 -0.9994 -0.9999 -1.0000 

64 -0.1062 -0.2103 -0.3102 -0.4045 -0.4916 
-0.5708 -0.6417 -0.7040 -0.7581 -0.8044 
-0.8436 -0.8762 -0.9032 -0.9253 -0.9430 
-0.9572 -0.9684 -0.9770 -0.9836 -0.9886 
-0.9923 -0.9950 -0.9968 -0.9981 -0.9989 
-0.9994 -0.9997 -0.9999 -1.0000 -1.0000 
-1.0000 

After examining the eigenvalues ei (i = n/2+2, ... , n) for various n, the following 
patterns are recognisable: 

(1) 0 < Iei| < 1, 
(2) le-1-l < le-i, 
(3) enI -1 and e2+n/21 - 0 as n -- oo, 
(4) while there is a large number of ei clustering near unity, only very few ei are 

distributed close to 0. 
It should be noted that the value Im(ei) =-1 in Table 1 is only due to rounding 
down. 

5. GENERALISED CONJUGATION OPERATOR (GCO) 

Let ei (i = 1, 2,... ., n) be the eigenvalues of the Discretized Conjugation Oper- 
ator C, and D = diag(dl, d2, . .., dn), where di = 2ei/(1 + Ie, 12). The Generalised 
Conjugation Operator is defined as the circulant matrix 

(5.1) G F*DF. 

Theorem 5.1. For any U = (U1 U2 ,... , Un)T and Vo (b, b,.. ., b)T, the finite 
sequence V C RTn given by 

V =GU+Vo 

is the least square solution of the system 

(5.2a) V= CU+Vo, 

(5.2b) CV = -U + Uo, 

where C is the DCO and Uo = (a, a,.. ., a)T with 

a = -Ul + U2 + *- +U,) n 
Similarly, given any V = (VI , V2 ... , Vn)7 and Uo (a, a,.. ., a)T, the finite se- 
quence 

U =-GV + Uo 
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is the least square solution of the system 

(5.3a) U =-CV + Uo, 
(5.3b) CU=V-V0, 

where 

Vo = (b, b, ..., b)T with b -(V + V2 + *+ Vn) 

Proof. The proof is given for only the first case since that for the second is essentially 
the same. The system of (5.2a) and (5.2b) is written more compactly, 

(5.4) [c V = 
[_I_ U + [Uo 

Obviously, the 2n x n matrix [c] has full column rank and thus its generalised 
(M-P) inverse is given by 

C {[I C] [C [I C-] = [I+C*C]-1 [I C*] . 

But from the theory of generalised inverse, briefly reviewed in the Appendix, the 
least square solution of (5.4) is represented by 

(I + C*C)-1(C - C*)U + (I + C*C)-1Vo 

=F*DFU+Vo = GU+Vo. 

The proof is completed. 

Since, for any real function U E LP (1 < p < oc) defined in the interior of a 
unit circle and an arbitrary constant Vo, there always exists a real function V such 
that both (3.2) and (3.4) are satisfied, it is natural to expect that the discretized 
version of this problem will lead to a similar situation, namely that, given finite 
sequences U = (U1, U2,... , Un)aT and Vo = (b, b,... , b)T, there exists a sequence 
V C RTn satisfying (5.2a) and (5.2b), which are the finite-dimensional counterparts 
of (3.2) and (3.4). Surprisingly enough, this is not the case, as is shown next. 

Theorem 5.2. The system of (5.2a) and (5.2b) is generally not solvable. 

Proof. Suppose that, for arbitrary U and Vo, (5.2a) and (5.2b) are satisfied by a 
V. Then, 

CCU= -U+Uo, 

F* diag(e 2 e2,.., e2 )FU =F* diag(0,-1,1, ... .,-1)FU, 

diag(e,e2,... ., e2) diag(O, -1,.. ., -1) 

which leads to e1 0 and ej ?i for j = 2, 3, . n, n. But for any finite n, the 
eigenvalues ej (j 1, 2, ... n, ) of C do not satisfy the above condition, therefore 
the system of (5.2a) and (5.2b) is not generally solvable. 

The above theorem actually explains the rationale behind the introduction of 
GCO and the following one is concerned with the norm of G. 
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Theorem 5.3. The 12 norm of the generalised conjugation operator fIGf12 is less 
than 1 unless the discrete conjugation operator has an eigenvalue of modulus equal 
to 1, in which case IG21. 

Proof. For a real n x n matrix A, it is known that 

JJA1l2= [p(ATA)]1/2 

where p(ATA) is the spectral radius of ATA. By the definition of G, 

+I 1G 12 =max ( L~ l 2 

where ei (i 1, 2,... ,n) are the eigenvalues of the discrete conjugation operator 
C. Obviously, 

< 1 

1+ le.1l2 

The equality holds only when I = 1. The proof is completed. 

6. A NEW ALGORITHM FOR NCM BASED ON GCO 

It is required to construct an analytic function f (z) = U + iV which conformally 
maps the interior of the unit disc in the z-plane onto a simply-connected domain 
Q with boundary C, in the w-plane. The first step toward the solution is to 
determine the boundary value f (es) (0 < s < 2Xr) of the mapping function f (z). 
This is equivalent to finding two real value functions U(eis) and V(eis), satisfying 
(3.2) and (3.4), such that U(eiS) +iV(eis) E C, for 0 < s < 2Xr. Once its boundary 
value is known, the desired analytic function f(z) is given by the Cauchy integral 
formula 

(6.1) f(z) it2i Ic. je) d(e%L) 

where Cz is the unit circle. 
According to the discretization scheme described in the last section, U(eis) 

and V(eis) can be approximately represented by two finite sequences U - 

(u1,u2,. .,un) and V = (V1,V2, ...,vn)T, where uj = U(w-1) with w - 

For an arbitrary X = (Xl,X2,. .. ,xn) T, an X0 = (a,a, ...,a)T is defined with a 
(x1 + x2 + -+-xn)/n. The problem of conformal mapping can be numerically solved 
by finding two sequences U and V such that uj + ivj E C, for j 1, 2,.. . .,n and 
satisfying the discretized forms of (3.2) and (3.4), namely 

(6.2a) V - Vo CU, 

(6.2b) U-Uo0 =-CV. 

For any 0 < r < 1, if z = reis (0 < s < 2r), (6.1) becomes 

(6.3) f(reiS) 2 i f eifi) d(e%t) 

Let l4 = (X1,X2,. . . ,'n )T and @(r) = (Vl(r), V2(r), .. . , in (r))T, where X) = 

f(wJ1) and 4)j(r) = f(rwJ1). The discretization of (6.3) leads to 

(6.4) T (r) = A(r) qX 

where A(r) is again a circulant matrix which varies with r. 
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Given a vector space R', a vector in the direct product space R' x R' is denoted 
by (X, Y) where X C R' and Y E R'. Let F be a plane curve. The F-projection 
operator Pr: Rn x Rn -!R' x Rn is defined by 

Pr: (X, Y) - 4 (U, V) 

where (ui, vi) is the nearest point on F corresponding to the point (xi, yYi) for i= 
1,2, ... ,mn. 

A new algorithm for NCM is proposed. 
INPUT The number of nodes n; the maximum number of iterations N; the number 

of interior circles m, on which the mapping function is to be evaluated; 
the radii of the circles r, r2, ... , rn; the initial approximations U and V; 
the tolerance T; the representation of the boundary F. 

OUTPUT 4o = U + iV, '(rl), '(r2),.. ,(rm) 
Step 1: Calculate the generalised conjugation operator G. 
Step 2: For Zi 1 to N, do steps 3-7. 
Step 3: Set U U and V =V. 
Step 4: Set U = D1(-GV + Uo) + (I -D)U 

V= D2(GU+Vo) + (I-D2)V, 
where D1 and D2 are diagonal matrices whose 
elements have values in the interval [0,1]). 

Step 5: Set (U, V) = Pr(U, V), 
Set e - 2(IU - Ufl + IlV - Vfl). 

Step 6: If e < T then go to Step 8. 
Step 7: Continue. 
Step 8: For i =1 to m do Steps 9-10. 
Step 9: Calculate A(ri). 
Step 10: Set '(ri) = A(ri)(D. 
Step 11: Output 4X, '(rl), '(r2),. . ., '(rm) 
Stop. 

The dominant computation in the algorithm is performed in the loop consisting of 
Steps 3-7 which calculate the boundary value of the mapping function iteratively. 
Once this is done, Steps 9-10 evaluate the mapping function on the desired internal 
circles. The computational cost is O(n log2 n) by means of FFT. 

The iteration used in Steps 3-7 is actually a relaxation method. This can be 
seen more clearly when the formulas in step 4 are rewritten, 

U(-) = U('-') + D1(-GV('-1) + U('-') - U(i-l)) 

V(') = V('-') + D2(GU(i-1) + V(i- Vi 

The matrices D1 and D2 consist of relaxation parameters and the terms following 
them can be viewed as residuals. 

While theoretical optimum values of D1 and D2 are difficult to identify, several 
relaxation matrices have been tested in implementing the algorithm. The following 
values for D1 and D2 were found effective, 

D, = diag(cos2 01, COS2 02, , Cos2 On), 

D2 = diag(sin2 01, sin2 02, ... ,sin2 On), 

where Oj is the angle between the U-axis and the tangent of F 

at the point (Uji l),v(' 1)). When F is not differentiable at (Uji l),v('<1)), the 
mean value of the left and the right limits of cos2 O. is used. 
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Although the algorithm is designed for simply-connected domains, a similar 
strategy should be applicable to doubly-connected domains as well, particularly 
to those with a boundary at infinity. 

7. CONVERGENCE STUDY 

According to Riemann's mapping theorem, infinitely many mapping functions 
f(z) exist. The mappings become unique when f(O) and f(1) are specified. But this 
is deliberately not done so that the algorithm may quickly converge to a solution 
which is closest to the initial approximation. However, in order to study the con- 
vergence, f (O) is specified for simplicity. Now let f (O) = a +ib, Uo = (a, a, ... , a)TI 

Vo = (b, b, ... , b)T, and (U, V) be a numerical solution. Then according to Theo- 
rem 5.1, 

(7.1a) U =-GV + U0, 

(7.1b) V = GU + Vo 

within truncation accuracy. For any initial approximation (Uo, VO), with D1 and 
D2 taken, for simplicity, as unit matrices, the algorithm proceeds by evaluating 

(7.2a) Xi -GVi-1 + Uo, 

(7.2b) Yl = GUi-1 + Vo 

and 

(7.3) (U2,V2) =IPr(X yi), i= 1,2. 

For (X,Y) E R2 x R2 (X,Y C R?), the 12 norm of (X,Y) is given by 

lx, X,){ H= (HIXH12 + llyf2)l/2 
Conjecture. Within truncation error, the proposed algorithm converges in a global 
sense. 

Proof of plausibility. Subtracting (7.la) and (7.lb) from (7.2a) and (7.2b), respec- 
tively gives 

Xi _ U = -G(V,-' - V), 

Yi -V= G(U1- U). 

As noted in Section 4, all eigenvalues of a discrete conjugation operator appear to 
be less than 1 in magnitude, which implies that JIG1l2 < 1 by Theorem 5.3. Thus, 

(7.4) IXi - Ul12 < IlVi-1 - Vfl2, IlYi - Vl12 < IjUi-1 - U112. 

From (7.4) it follows that 

(7.5) {Qx1i Yi) - (U V)112 < fl(U2-l, i-1) - (U,V)112 

On the other hand, by referring to the definition of the operator Pr, the following 
assertion should be plausible, 

(7.6) Jl(U,Vi) - (U,V)112 < fl(Xi,Yi) - (U,V)112. 

By (7.5) and (7.6), 

(7.7) 1(U, V i) - (U V)1)2 < l(U i1, Vi-1) - (U,V)112- 
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Therefore, starting from any approximation (UO, VO), the algorithm produces a 
sequence (Ui, Vi) (i = 1, 2,. .. ) with the property that (Ui, Vi) is always a better 
approximation than (U'1, V-1). The conjecture is seen to be highly tenable. 

There are three difficulties which prevent this conjecture from being a theorem. 
First, the empirical relation (7.5) is not proved. Second, (7.6) is purely based on 
intuitive rather than formal logic. Third, there is no guarantee that (7.7) implies 

(Ui,Vi) - (U,V)H12 -* 0 as i -4 oo. 

A series of demanding problems were designed to test the algorithm and no diver- 
gence has occurred. 

8. IMPLEMENTATION AND NUMERICAL TESTS 

The algorithm presented above has been implemented in FORTRAN. The code 
consists of the main program and 16 subroutines together with three NAG library 
functions for FFT analysis. Most of the complexity is related to the crowding 
phenomenon, also called Geneva effect, a notorious difficulty for NCM. Fornberg 
[25] reported a case in which, for a set of uniformly distributed points, the density 
of the mapped images varies by as much as a factor of 400 along the boundary. 
For one of the problems solved by the present method, the maximum density is 
0.6570554 x 106 times the minimum. 

A wide range of problems were designed to test the robustness of the program. 
Mapping was carried out in the six cases illustrated in Figs. 1-6 and some numer- 
ical results for these examples are listed in Table 2. The meaning of the symbols 
appearing in Table 2 is: 

n= number of nodes. 

m= number of iterations. 

A1 = 11 norm of the improvement by the first iteration. 

Am = 11 norm of the improvement by the last iteration. 

R = 11 norm of the residue vector (Um - CVm - um, Vm + CUm - VM). 

where the 11 norm of a vector (X, Y) E R n x R n is defined by 

JJ(XiY)JJ = I1 (JX11 + IX21 + X + lXnl + lyll + JY21 + + JYnDl) 2m 
It is worth noting that all the examples except example 2 have non-smooth bound- 
aries. A particular promising feature of the program is that it can cope with 
domains with cracks as shown in Figs. 5 and 6. 

TABLE 2. Performance of the numerical algorithm 

No. n m A1 A/m R 
1 512 41 0.10104669 x 100 0.92845586 x 10-5 0.26434862 x 10-3 

2 512 10 0.70355799 x 10-1 0.66744256 x 10-5 0.27908080 x 10-4 

3 512 50 0.71911930 x 10-1 0.50901045 x 10-4 0.63661337 x 10-3 

4 512 32 0.84973517 x 10-1 0.94241229 x 10-5 0.89792556 x 10-2 
5 512 20 0.12951817 x 10-1 0.94362245 x 10-5 0.63127624 x 10-2 
6 512 37 0.89485350 x 10-1 0.88609177 x 10-5 0.19803488 x 10-2 
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TABLE 3. Residual error 

Example 1 Example 2 
ra m R m R 
64 36 0.60685029E-02 11 0.17620477E-02 

29 0.60702471E-02 9 0.17619187E-02 
18 0.61014670E-02 7 0.17669442E-02 
8 0.71021459E-02 5 0.18240110E-02 

128 50 0.23762966E-02 18 0.47801809E-03 
39 0.23739123E-02 10 0.47112142E-03 
25 0.24007058E - 02 7 0.46280896E - 03 
8 0.45294778E-02 5 0.56127843E-03 

256 50 0.70615093E-3 21 0.11968090E-03 
35 0.70853861E-3 10 0.11505557E-03 
19 0.85164402E-3 7 0.13063008E-03 
6 0.22042739E - 2 5 0.50775510E - 03 

512 50 0.25787434E - 03 13 0.29034335E - 04 
41 0.26434862E-03 10 0.27908080E-04 
21 0.51263787E-03 7 0.10712332E-03 
6 0.19963725E-02 5 0.56999157E-03 

Although theoretically any conformal mapping problem should have infinitely 
many exact solutions, its discretized version is generally not solvable as suggested 
by Theorem 5.2. It has to be noted that the difficulty is at the heart of the problem, 
therefore it cannot be overcome by using any finite degree of discretization. This is 
particularly true for domains with distorted shapes or non-smooth boundaries due 
to the crowding effect which has been the subject of much recent study [34, 35]. 
Thus, the minimum residue vector of an NCM problem is typically not zero. A 
vector which minimises the residue vector is accepted as a solution of the problem. 

The residuals of test examples 1 and 2 are listed in Table 3, for various n and 
m. The notation is the same as in Table 2. Obviously, the residual errors depend 
on both the numbers of nodes and iterations and the complexity of the boundary 
geometry. It is generally not possible to estimate the overall amount of compu- 
tational effort required to achieve a given accuracy for domains with non-smooth 
boundaries because the number of iterations is closely related to the boundary com- 
plexity which itself cannot be meaningfully quantified by any method known to the 
authors. This is particularly true for domains with cracks. 

For any problem, there is a minimum residual error Rm corresponding to each 
boundary discretization. The program will reach Rm after a certain number of 
iterations. Further iterations would not improve the result. It is discernible from 
Table 3 that the minimum residuals are roughly 0(1/nn3/2) , 0(1/n2). The con- 
vergence speed and the solution accuracy are significanitly higher if the boundary 
is smoother. It is quite remarkable that for example 2 the programme takes only 
7-10 iterations to reach the minimum residual error. 
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FIGURE 1. Mapping example 1: domain with non-smooth boundary 

FIGURE 2. Mapping example 2: elliptical domain 
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FIGURE 3. Mapping example 3: triangular domain 

FIGURE 4. Mapping example 4: boundary with re-entrant corner 
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FIGURE 5. Mapping example 5: circular domain with a crack 
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FIGURE 6. Mapping example 6: square domain with a crack 

9. COMPARISON WITH PREVIOUS ALGORITHMS 

Most of the algorithms in the literature work only for domains bounded by a re- 
stricted class of curves, that is, star-like, smooth, H6lder-continuously differentiable 
or Jordan curves, and none of them have achieved global convergence. However the 
present algorithm can be freely applied to any simply-connected domain, and ap- 
pears to converge globally. Owing to the inherent complexity of NCM problems, 
this conjecture may never be mathematically proved, but it is well supported by 
the trial examples. 

Regarding computational efficiency, the present algorithm is also superior to 
earlier ones. It is generally accepted that the most efficient algorithm up to now 
is based on Wegmann's method and this is believed to converge 7.5 times faster 
than the one based on Fornberg's method [31]. Each step in Wegmann's algorithm 
requires two complex FFT's and two real FFT's in addition to evaluating five 
elementary functions of sine or cosine type. If n is not too large, n < 5000 for 
instance, the effect of evaluating a trigonometric function at n points is usually not 
less than the effort to perform an FFT on an n-dimensional real vector. Thus for 
Wegmann's method, each iteration is computationally equivalent to about 11 real 
FFT's. In contrast, a step in the present algorithm takes only four real FFT's. The 
speeds of convergence for the two algorithms seem to be comparable based on our 
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limited numerical tests. It is therefore suggested that the algorithm in this work 
should be more efficient than Wegmann's method. 

APPENDIX 

The subjects of circulant matrix and generalised inverse are briefly reviewed for 
reference. A more detailed treatment is given by Davis [36]. 

Circulant matrix. A matrix of the form 
Ci C2 ... C 

Cn Ci ... Cn}- 
C = Circ(cl, C2, Cn)= 

[C2 C3 ... ] 

is called a circulant matrix, or simply a circulant for short. It is known that C is 
diagonalized by a Fourier matrix, namely, 

(A. 1) C = F*DF 

where the Fourier matrix F and the diagonal matrix D are defined by 

Fi. = exp [ n \/=(i-l)(j-1)] 3 nJ 

dei 0 ... 01 
0 d2 ... 0 

D = diag(d , d2, vdn)= : : : : 

0 0 ... dnj 

and F* denotes the conjugate transpose of F. Obviously the diagonal elements of 
D represent the eigenvalues of C, which are related to the elements of C by the 
following equation, 

L = rF*M, 

in which 

L = (di, d2i ... ,dn)TJ M= (Cl iC2 i... iCn) T. 

Since the Fourier matrix is unitary, that is, F-1 F*, the effort to invert a circulant 
matrix is practically trivial. More explicitly, if C = F*DF, then C-1 = F*D-lF. 
The manipulation of circulant matrices is completely reduced to that of the Fourier 
matrix. Thus, for instance, the solution of a linear system of algebraic equations 
requires only n log2 n operations by means of FFT if the associated matrix is a 
circulant. In contrast, the computation involved in solving a general linear system 
is typically 0(n3). 

Generalised inverse. A linear system AX = Y is generally not solvable when A 
is either a singular square or a rectangular matrix. If the case arises, an approx- 
imate solution such as the least square solution is usually desirable. It is mainly 
the problems of this sort which have prompted the investigation on the so called 
generalised inverses of matrices. 

Let A be an m x n matrix and B an n x m matrix, then B is called a generalised 
inverse of A if it satisfies any of the following conditions: 

(1) ABA = A, 
(2) BAB = B, 
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(3) (AB)* = AB, 
(4) (BA)* = BA. 

A matrix with all the four properties is called a Moore-Penrose or M-P inverse of 
A, and it is denoted by A . It has been proved that there always exists a unique 
M-P inverse for an arbitrary matrix. There are actually recursive algorithms for 
the numerical computations of M-P inverses. 

What makes M-P inverses useful is the fact that the vector X = AY is the 
least square solution with minimum 12 norm of the linear system: 

(A.2) AX = Y. 

The general solution of (A.2) is given by 

X - A Y + (I - A`A)Z, 

where Z is an arbitrary column vector. 
For a diagonal matrix D diag(dl, d2,..., d), the M-P inverse of D is D = 

diag(d, d,d.-..,d ), where di =/di if di O and di = O if d O. If C = F*DF 
is a circulant, its M-P inverse is given by C = F*D?F. 
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